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Simulation Topics

• Calculations of Energy Deposition in the Target:
– Using MARS (H. Kirk, S. Kahn, N.Mokhov)
– Using GEANT(S.Kahn)
– Using MCNPX (H. Ludwick}

• Acoustic Analysis of E951 Experiment:
– Simulation of Target and Windows with ANSYS (N. Simos)

• Dynamics of Mercury  Jet in a Magnetic Field:
– Simple Perturbation Calculations
– More Sophisticated Calculations with HEIGHTS (A. Hassanein)

• Hydrodynamic Calculations for Mercury Nozzle.
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Cartoon of Carbon Targets In Test Box

Material Specific Density Expansion Coefficient
ATJ-Graphite 1.72 ??

Carbon-Carbon Compound 2.0 ~0
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Energy Deposition in a Carbon Target

Total Energy Deposited in a Slab/
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•Comparison of the calculation of the 
energy deposited between different 
programs:

•Geant with Fluka
•Geant with Gheisha
•Mars 14
•MCMPX (not shown because 
agreement is not good)

Integrated over r

In cylinder of 1 mm radius 
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Energy Deposition in Mercury Target

Mercury Energy Deposit over Slab
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E951 Parameters

Parameter Desired Achieved Study II
Intensity 16 TP 4 TP 16 TP
Spot Size 0.5 mm × 0.5 mm 0.7 mm × 1.9 mm 1.5 mm × 1.5 mm

Single Pulse Length 100 ns 100 ns 100 ns
Beam Energy 24 GeV 24 GeV 14 GeV

•The sudden deposit of energy causes an acoustic shock wave.

•So far the AGS has not delivered a beam with sufficient energy 
density to destroy metal windows.

•The target is instrumented with strain gauges to detect acoustic
wave signal.
•The observed acoustic wave intensity is consistent with the 
expected energy density from the observed spot size and beam 
intensity 
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Temperature Profile in FRONT ATJ Graphite
induced by 1.7 TP and beam spot 1.7 x 0.7 mm rms

16 TP would raise 
temperature 100° C 
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Targeting Schematic
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Parameter Symbol Current Study  
Hg Jet Radius RHg 0.5 cm 

Jet Incline Angle θjet 67 mrad 
Angle Between Jet and Beam θcrossing 33 mrad 

Jet Velocity Vjet 30 m/sec 
Time Between Pulses ∆t 20 ms 

Length of Jet Ljet 60 cm 
 

Parameter Symbol Value 
Conductivity κ, Ω cm 104 

Density ρ, gm/cm3 13.4  
Surface Tension Tsurface, n/m 0.456 
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List of Forces, Pressures, Distortions, 
Deflections

• Induced azimuthal Eddy current.
• Radial forces:  JEddy×Bz

– Hydrostatic Pressure
• Axial force

– Contribution from Hydrostatic Pressure
– Contribution from dBz/dz

• Transverse forces and deflections
• Shear forces
• Transverse elliptical distortion
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Magnetic Field in Local Coordinates

• Figure show Bz and By in the local 
coordinate system of the Hg jet.
– Local system is inclined 67 mrad

to solenoid axis.
– Field shown with and w/o iron 

pole present:
• Pole keeps field reasonably 

uniform over targeting region.
• Pole is Vanadium Permadur Steel.
• There is a 2T difference due to 

pole.
• Field Derivitives dBz/dz and dBy/dz

in local coordinate frame.

Local Field Along Path
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Axial Forces
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Equation for axial force on jet in the field:

Direct term
From jφBr

Hydrostatic term
From jφBz transferred to 
axial direction since Hg 

is liquid

Shear term

B
y f

F

F

Can be reduced by 
keeping incline 

angle small and by 
jet radius small 

Force 
Density
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Design Considerations for Hg Jet

• Most of the disruption to Hg jet occurs upon entering and 
exiting the magnetic field.
– Injecting Hg jet from nozzle inside the coil avoids 

disruption of jet on entrance to field.
• Nozzle made of High permeability steel causes field to be 

reasonably perpendicular in its vicinity.  
– This minimizes field derivitives over region where jet 

intersects proton beam.
• This minimizes forces on jet in this region.
• Retardation of Hg by the field is less than 1 m/s.
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Future Directions

• Study Hydrodynamics of Hg Jet 
to improve nozzle design for a 
more laminer Hg jet.

• Perform experiments on Hg jet 
in high magnetic field.
– This will provide feedback 

to the calculations. No Field 13 Tesla

Grenoble Tests


